A New Weighted Degree Centrality Measure: The Application in an Animal Disease Epidemic
نویسندگان
چکیده
In recent years researchers have investigated a growing number of weighted heterogeneous networks, where connections are not merely binary entities, but are proportional to the intensity or capacity of the connections among the various elements. Different degree centrality measures have been proposed for this kind of networks. In this work we propose weighted degree and strength centrality measures (WDC and WSC). Using a reducing factor we correct classical centrality measures (CD) to account for tie weights distribution. The bigger the departure from equal weights distribution, the greater the reduction. These measures are applied to a real network of Italian livestock movements as an example. A simulation model has been developed to predict disease spread into Italian regions according to animal movements and animal population density. Model's results, expressed as infected regions and number of times a region gets infected, were related to weighted and classical degree centrality measures. WDC and WSC were shown to be more efficient in predicting node's risk and vulnerability. The proposed measures and their application in an animal network could be used to support surveillance and infection control strategy plans.
منابع مشابه
The Influence of Location on Nodes’ Centrality in Location-Based Social Networks
Nowadays, due to the widespread use of social networks, they can be used as a convenient, low-cost, and affordable tool for disseminating all kinds of information and data among the massive users of these networks. Issues such as marketing for new products, informing the public in critical situations, and disseminating medical and technological innovations are topics that have been considered b...
متن کاملLaplacian centrality: A new centrality measure for weighted networks
The centrality of vertices has been a key issue in network analysis. For unweighted networks where edges are just present or absent and have no weight attached, many centrality measures have been presented, such as degree, betweenness, closeness, eigenvector and subgraph centrality. There has been a growing need to design centrality measures for weighted networks, because weighted networks wher...
متن کاملC-index: A weighted network node centrality measure for collaboration competence
This paper proposes a new node centrality measurement index (c-index) and its derivative indexes (iterative c-index and cg-index) to measure the collaboration competence of a node in a weighted network. We prove that c-index observe the power law distribution in the weighted scale-free network. A case study of a very large scientific collaboration network indicates that the indexes proposed in ...
متن کاملEpidemic centrality - is there an underestimated epidemic impact of network peripheral nodes?
In the study of disease spreading on empirical complex networks in SIR model, initially infected nodes can be ranked according to some measure of their epidemic impact. The highest ranked nodes, also referred to as " superspreaders " , are associated to dominant epidemic risks and therefore deserve special attention. In simulations on studied empirical complex networks, it is shown that the ran...
متن کاملThe role of centrality for the identification of influential spreaders in complex networks
The identification of the most influential spreaders in networks is important to control and understand the spreading capabilities of the system as well as to ensure an efficient information diffusion such as in rumor-like dynamics. Recent works have suggested that the identification of influential spreaders is not independent of the dynamics being studied. For instance, the key disease spreade...
متن کامل